Intrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms
نویسنده
چکیده
Intrusion Detection is one of the important area of research. Our work has explored the possibility of integrating the fuzzy logic with Data Mining methods using Genetic Algorithms for intrusion detection. The reasons for introducing fuzzy logic is two fold, the first being the involvement of many quantitative features where there is no separation between normal operations and anomalies. Thus fuzzy association rules can be mined to find the abstract correlation among different security features. We have proposed architecture for Intrusion Detection methods by using Data Mining algorithms to mine fuzzy association rules by extracting the best possible rules using Genetic Algorithms. .
منابع مشابه
Designing an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملFuzzy Data Mining and Genetic Algorithms Applied to Intrusion Detection
We are developing a prototype intelligent intrusion detection system (IIDS) to demonstrate the effectiveness of data mining techniques that utilize fuzzy logic and genetic algorithms. This system combines both anomaly based intrusion detection using fuzzy data mining techniques and misuse detection using traditional rule-based expert system techniques. The anomaly-based components are developed...
متن کاملStudy of Integration and Simulation of Various Intrusion Detection Techniques
In security infrastructure network intrusion detection system plays an important role. There are number of novels attacks in present scenario and it is not an easy to determine that. So in this paper we discuss the few new integrated network detection system. This paper also gives a better NIDS as a result because the numbers of good techniques have been integrated in this paper. So as conclude...
متن کاملIntrusion Detection using Fuzzy Data Mining
With the rapid expansion of computer networks during the past few years, security has become a crucial issue for modern computer systems. A good way to detect illegitimate use is through monitoring unusual user activity. The solution is an Intrusion Detection System (IDS) which is used to identify attacks and to react by generating an alert or blocking the unwanted data. For IDS, use of genetic...
متن کاملUse of Genetic Algorithm with Fuzzy Class Association Rule Mining for Intrusion Detection
In today’s life Intrusion Detection System gain the attention, because of ability to detect the intrusion access efficiently and effectively as security is the major issue in networks. This system identifies attacks and reacts by generating alerts or blocking the unwanted data/traffic. Intrusion Detection System mainly classified as Anomaly based intrusion detection systems that have benefit of...
متن کامل